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Abstract. We study smooth transformationsV (x) = g(x2)+ f ( 1
x2 ) of the solvable potentials

λx2 + µ

x2 . Eigenvalue approximation formulae are obtained which provide lower or upper
energy bounds for all the discrete energy eigenvaluesEn, n = 0, 1, 2, . . ., accordingly as the
transformation functionsg andf are both convex or both concave. Detailed results are presented
for the special case of two-term singular potentials of the formV (x) = λxβ + µ

xα
, α, β > 0,

and also for the potentialsV (x) = λx1.9 + µ

x1.9 andV (x) = λx2.1 + µ

x2.1 , λ > 0, µ > 0, for
06 n 6 10.

1. Introduction and main result

In many cases the exactly solvable problems in non-relativistic quantum mechanics provide
simple and effective models illustrating the most relevant features of actual physical
phenomena. Further, they may provide a starting point for more accurate approximations
based on a variational or perturbation method, or on geometric properties of the Hamiltonian
involved [1, 2]. In envelope theory [3], for example, the exactly solvable models play a basic
role in the development of the energy approximation expressions. There are many excellent
sources available in the literature for exactly solvable models in quantum mechanics [4–10].
Gol’dman and Krivchenkov [5], for example, have provided a clear description of the exact
solution for the following one-dimensional Schrödinger equation (in units ¯h = 2m = 1):

−ψ ′′ + (λx2+ µ

x2
)ψ = Enψ ψ(0) = 0 λ > 0, µ > 0. (1)

They showed that the energy spectrum of (1) is given by

En =
√
λ
(

4n+ 2+
√

4µ+ 1
)

n = 0, 1, 2, . . . . (2)

The purpose of the paper is to use such solutions to investigate the spectrum of the
Schr̈odinger equation:

−ψ ′′ + V (x)ψ = Enψ ψ(0) = 0 (3)

where

V (x) = g(x2)+ f
(

1

x2

)
(4)

is a sum of two smooth transformations respectively ofx2 and 1
x2 , andEn is the eigenvalue.

We shall show thatEn can be approximated by the expression

En ≈ εn = min
s,t>0

{
g(s2)− s2g′(s2)+ f

(
1

t2

)
− 1

t2
f ′
(

1

t2

)
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+
√
g′(s2)

(
4n+ 2+

√
4f ′

(
1

t2

)
+ 1

)}
n = 0, 1, 2, . . . . (5)

This formula provides a lower bound(≈=>) or an upper bound(≈=6) to the exact
eigenvalues according to whether the transformation functionsg andf are both convex or
both concave. This allows us, for example, to obtain simple expressions which bound
the spectrum of the spiked harmonic oscillator potentialV (x) = λx2 + µ

xα
, α > 1,

n = 0, 1, 2, . . ., a problem which is of considerable interest [11–18]. Indeed, formula
(5) implies that the energy of spiked harmonic oscillator can be approximated by

En ≈ εn(t̂) =
(

1− α
2

) µ
t̂α
+ 2λt̂2+ 2

√
λ(2n+ 1) (6)

where t̂ is the real root of

2µαt2−α − 4λt4+ 1= 0.

Hereεn(t̂) is lower bound toEn whenα > 2 and an upper bound whenα < 2.

2. Transformed potentials

In order to lay down a framework to the approximation method we are about to construct,
we consider a Schrödinger Hamiltonian of the form

H = − d2

dx2
+ g(x2)+ f

(
1

x2

)
(7)

where g and f are smooth transformations ofx2 and 1
x2 , respectively. For example,

when g and f are identity transformations, the problem has the exact solution (2) for
all n and arbitrary positive values ofλ andµ. Standard envelope theory [3] suggests the
following approach to treat a Hamiltonian of the form (7). We may approximate the shape
of V (x) = g(x2) + f ( 1

x2 ) by some suitable potential, called base potential, with known
spectrum. Using the well known comparison theorem (or refinements thereto [19]) for
V (x) with this base potential, we can obtain eigenvalue bounds forH . This method has
been applied to obtain a simple lower bound formula for eigenvalues of the spiked harmonic
oscillatorV (x) = x2+ 1/xα, α > 1 using a harmonic oscillator as a base potential [18].

Here we add a new idea which leads to energy bounds which are both more general
and sharper. Instead of approximatingV (x) by a single potential, as in [18], we use the
tangent approximation forg(x2) andf ( 1

x2 ), separately. That is to say, we replaceg andf
by their corresponding tangent approximations

g(s)(x2) = a(s)+ b(s)x2

f (t)
(

1

x2

)
= c(t)+ d(t)

x2

(8)

respectively, wheres is a contact point betweeng(x2) and its tangent approximationg(s)(x2),
and t plays a similar role forf . Elementary analysis implies thatV (x) in (4) can thus be
approximated by

V (s,t)(x) = g(s2)− s2g′(s2)+ g′(s2)x2+ f
(

1

t2

)
− f

′( 1
t2
)

t2
+ f

′( 1
t2
)

x2
. (9)

With this approximation forV (x), we may use the result of Gol’dman and Krivchenkov (2)
for the eigenvalues of Schrödinger equation

−ψ ′′ + V (s,t)(x)ψ = εn(s, t)ψ. (10)
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Table 1. Some lower boundsEL0 and upper boundsEU0 using (6) forH = − d2

dx2 + x2 + 1000
xα

.

The ‘exact’ valuesEN0 were obtained by direct numerical integration of Schrödinger’s equation.

µ = 1000

α EL0 EN0 EU0

0.5 — 415.889 79 416.309 77
1 — 190.723 31 190.992 13
1.5 — 104.410 22 104.539 93
1.9 — 71.061 58 71.086 86
2 65.253 46 65.253 46 65.253 46
2.1 60.127 04 60.152 01 —
2.5 44.833 49 44.955 49 —
3 33.079 40 33.316 76 —
3.5 25.762 04 26.108 85 —
4 20.918 65 21.369 64 —
4.5 17.552 18 18.101 83 —
5 15.117 58 15.761 13 —
5.5 13.298 42 14.031 07 —
6 11.901 53 12.718 62 —

Table 2. lower boundsEL0 using (6) forH = − d2

dx2 + x2+ µ

x5/2 with different values ofµ. The

‘exact’ valuesEN0 were obtained by direct numerical integration of Schrödinger’s equation.

α = 5
2

µ EL0 EN0

1000 44.833 49 44.955 49
100 17.419 00 17.541 89

10 7.611 69 7.735 11
5 6.173 94 6.296 47
1 4.204 53 4.317 31
0.5 3.746 16 3.848 55
0.1 3.204 95 3.266 87
0.05 3.109 54 3.152 43
0.01 3.023 36 3.036 70
0.005 3.011 78 3.019 05
0.001 3.002 37 3.003 97

Thus we have

εn(s, t) = g(s2)− s2g′(s2)+ f
(

1

t2

)
− 1

t2
f ′
(

1

t2

)

+
√
g′(s2)

(
4n+ 2+

√
4f ′

(
1

t2

)
+ 1

)
. (11)

For the eigenvalues of Schrödinger equation (3), we have
(a) En 6 εn(s, t) if g andf are both convex.
(b) En > εn(s, t) if g andf are both concave.
The proof is obtained by the following simple argument. For definiteness we consider

case (a). Sinceg andf are convex, their graphs lie above their tangents. Consequently,
we have from (9) thatV (s,t)(x) 6 V (x). Case (a) then follows by an application of the
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Table 3. Upper boundsEUn using (12) forH = − d2

dx2 + λx1.9+ µ

x1.9 with different values ofn.

The ‘exact’ valuesENn were obtained by direct numerical integration of Schrödinger’s equation.

λ = µ = 1

n EUn ENn

0 4.160 38 4.116 28
1 7.946 96 7.850 41
2 11.684 36 11.544 96
3 15.389 87 15.211 95
4 19.071 75 18.857 79
5 22.734 85 22.486 48
6 26.382 39 26.100 75
7 30.016 64 29.702 60
8 33.639 30 33.293 52
9 37.251 69 36.874 71

10 40.854 86 40.447 12

Table 4. Lower boundsELn using (12) forH = − d2

dx2 + λx2.1+ µ

x2.1 with different values ofn.

The ‘exact’ valuesENn were obtained by direct numerical integration of Schrödinger’s equation.

λ = µ = 1

n ELn ENn

0 4.309 42 4.356 98
1 8.519 89 8.626 97
2 12.782 43 12.940 00
3 17.079 60 17.283 55
4 21.402 86 21.650 81
5 25.747 12 26.037 51
6 30.108 94 30.440 71
7 34.485 90 34.858 23
8 38.876 13 39.288 42
9 43.278 21 43.729 98

10 47.690 99 48.181 84

comparison theorem. Case (b) is proven in an analogous way if ‘convex’ is replaced by
‘concave’. It is appropriate to mention here that the conclusions follow even if eitherf or g
is the identity transformation. These bounds may, of course, be sharpened by optimization
with respect tos and t , and moreover they are valid for the entire discrete spectrumn > 0.

3. Numerical results and conclusion

One of the interesting points concerning the bounds we have obtained, in section 2, is the
large variety of approximations made possible by different choices of the transformations
g andf . We consider, for example, the case whereg(x2) = λxβ andf ( 1

x2 ) = µ

xα
. From

(11) it follows that

εn(s, t) = λ
(

1− β
2

)
sβ +

(
1− α

2

) µ
tα
+
√
λβsβ−2

2

(
4n+ 2+

√
2µα

tα−2
+ 1

)
. (12)



Eigenvalue bounds for a class of singular potentials 967

For the spiked harmonic oscillatorβ = 2 and therefore it follows from (12) that the
eigenvalue approximation is given by (6). In tables 1 and 2 we exhibit the results of
the lower bounds obtained by using formula (6) for different values ofα and forλ = 1 and
different values of the coupling parameterµ, along with some accurate values obtained by
direct numerical integration of Schrödinger equation.

For the potentialV (x) = λx1.9 + µ

x1.9 , we takeβ = 1.9 and α = 1.9 in formula
(12), which provides upper bounds in this case. A comparison of some results obtained
by this formula and the corresponding results obtained by direct numerical integration, for
11 energy levels, are reported in table 3. In table 4, we report the corresponding results
for the caseβ = 2.1 andα = 2.1, that is to say, for the potentialV (x) = λx2.1 + µ

x2.1 .
Similar numerical results could also be obtained by using perturbation methods such as the
renormalized hypervirial perturbation method of Killingbeck [20].

The main point of the approach described in this paper is to provide a way to generate
simple general approximate formulae to be used for exploratory purposes. Once the
appropriate ranges of the potential parameters are established, direct numerical methods
could be used to find more accurate eigenvalues.
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