Eigenvalue bounds for a class of singular potentials

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1998 J. Phys. A: Math. Gen. 31963
(http://iopscience.iop.org/0305-4470/31/3/009)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.102
The article was downloaded on 02/06/2010 at 07:08

Please note that terms and conditions apply.

Eigenvalue bounds for a class of singular potentials

Richard L Hall and Nasser Saad
Department of Mathematics and Statistics, Concordia University, 1455 de Maisonneuve Boulevard West, Montréal, Québec, Canada H3G 1M8

Received 24 July 1997, in final form 22 October 1997

Abstract

We study smooth transformations $V(x)=g\left(x^{2}\right)+f\left(\frac{1}{x^{2}}\right)$ of the solvable potentials $\lambda x^{2}+\frac{\mu}{x^{2}}$. Eigenvalue approximation formulae are obtained which provide lower or upper energy bounds for all the discrete energy eigenvalues $E_{n}, n=0,1,2, \ldots$, accordingly as the transformation functions g and f are both convex or both concave. Detailed results are presented for the special case of two-term singular potentials of the form $V(x)=\lambda x^{\beta}+\frac{\mu}{x^{\alpha}}, \alpha, \beta>0$, and also for the potentials $V(x)=\lambda x^{1.9}+\frac{\mu}{x^{1.9}}$ and $V(x)=\lambda x^{2.1}+\frac{\mu}{x^{2.1}}, \lambda>0, \mu>0$, for $0 \leqslant n \leqslant 10$.

1. Introduction and main result

In many cases the exactly solvable problems in non-relativistic quantum mechanics provide simple and effective models illustrating the most relevant features of actual physical phenomena. Further, they may provide a starting point for more accurate approximations based on a variational or perturbation method, or on geometric properties of the Hamiltonian involved [1, 2]. In envelope theory [3], for example, the exactly solvable models play a basic role in the development of the energy approximation expressions. There are many excellent sources available in the literature for exactly solvable models in quantum mechanics [4-10]. Gol'dman and Krivchenkov [5], for example, have provided a clear description of the exact solution for the following one-dimensional Schrödinger equation (in units $\hbar=2 m=1$):

$$
\begin{equation*}
-\psi^{\prime \prime}+\left(\lambda x^{2}+\frac{\mu}{x^{2}}\right) \psi=\mathcal{E}_{n} \psi \quad \psi(0)=0 \quad \lambda>0, \mu>0 \tag{1}
\end{equation*}
$$

They showed that the energy spectrum of (1) is given by

$$
\begin{equation*}
\mathcal{E}_{n}=\sqrt{\lambda}(4 n+2+\sqrt{4 \mu+1}) \quad n=0,1,2, \ldots \tag{2}
\end{equation*}
$$

The purpose of the paper is to use such solutions to investigate the spectrum of the Schrödinger equation:

$$
\begin{equation*}
-\psi^{\prime \prime}+V(x) \psi=E_{n} \psi \quad \psi(0)=0 \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
V(x)=g\left(x^{2}\right)+f\left(\frac{1}{x^{2}}\right) \tag{4}
\end{equation*}
$$

is a sum of two smooth transformations respectively of x^{2} and $\frac{1}{x^{2}}$, and E_{n} is the eigenvalue. We shall show that E_{n} can be approximated by the expression
$E_{n} \approx \epsilon_{n}=\min _{s, t>0}\left\{g\left(s^{2}\right)-s^{2} g^{\prime}\left(s^{2}\right)+f\left(\frac{1}{t^{2}}\right)-\frac{1}{t^{2}} f^{\prime}\left(\frac{1}{t^{2}}\right)\right.$

$$
\begin{equation*}
\left.+\sqrt{g^{\prime}\left(s^{2}\right)}\left(4 n+2+\sqrt{4 f^{\prime}\left(\frac{1}{t^{2}}\right)+1}\right)\right\} \quad n=0,1,2, \ldots . \tag{5}
\end{equation*}
$$

This formula provides a lower bound $(\approx=\geqslant)$ or an upper bound $(\approx=\leqslant)$ to the exact eigenvalues according to whether the transformation functions g and f are both convex or both concave. This allows us, for example, to obtain simple expressions which bound the spectrum of the spiked harmonic oscillator potential $V(x)=\lambda x^{2}+\frac{\mu}{x^{\alpha}}, \alpha \geqslant 1$, $n=0,1,2, \ldots$, a problem which is of considerable interest [11-18]. Indeed, formula (5) implies that the energy of spiked harmonic oscillator can be approximated by

$$
\begin{equation*}
E_{n} \approx \epsilon_{n}(\hat{t})=\left(1-\frac{\alpha}{2}\right) \frac{\mu}{\hat{t}^{\alpha}}+2 \lambda \hat{t}^{2}+2 \sqrt{\lambda}(2 n+1) \tag{6}
\end{equation*}
$$

where \hat{t} is the real root of

$$
2 \mu \alpha t^{2-\alpha}-4 \lambda t^{4}+1=0
$$

Here $\epsilon_{n}(\hat{t})$ is lower bound to E_{n} when $\alpha>2$ and an upper bound when $\alpha<2$.

2. Transformed potentials

In order to lay down a framework to the approximation method we are about to construct, we consider a Schrödinger Hamiltonian of the form

$$
\begin{equation*}
H=-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}+g\left(x^{2}\right)+f\left(\frac{1}{x^{2}}\right) \tag{7}
\end{equation*}
$$

where g and f are smooth transformations of x^{2} and $\frac{1}{x^{2}}$, respectively. For example, when g and f are identity transformations, the problem has the exact solution (2) for all n and arbitrary positive values of λ and μ. Standard envelope theory [3] suggests the following approach to treat a Hamiltonian of the form (7). We may approximate the shape of $V(x)=g\left(x^{2}\right)+f\left(\frac{1}{x^{2}}\right)$ by some suitable potential, called base potential, with known spectrum. Using the well known comparison theorem (or refinements thereto [19]) for $V(x)$ with this base potential, we can obtain eigenvalue bounds for H. This method has been applied to obtain a simple lower bound formula for eigenvalues of the spiked harmonic oscillator $V(x)=x^{2}+1 / x^{\alpha}, \alpha \geqslant 1$ using a harmonic oscillator as a base potential [18].

Here we add a new idea which leads to energy bounds which are both more general and sharper. Instead of approximating $V(x)$ by a single potential, as in [18], we use the tangent approximation for $g\left(x^{2}\right)$ and $f\left(\frac{1}{x^{2}}\right)$, separately. That is to say, we replace g and f by their corresponding tangent approximations

$$
\begin{align*}
& g^{(s)}\left(x^{2}\right)=a(s)+b(s) x^{2} \\
& f^{(t)}\left(\frac{1}{x^{2}}\right)=c(t)+\frac{d(t)}{x^{2}} \tag{8}
\end{align*}
$$

respectively, where s is a contact point between $g\left(x^{2}\right)$ and its tangent approximation $g^{(s)}\left(x^{2}\right)$, and t plays a similar role for f. Elementary analysis implies that $V(x)$ in (4) can thus be approximated by

$$
\begin{equation*}
V^{(s, t)}(x)=g\left(s^{2}\right)-s^{2} g^{\prime}\left(s^{2}\right)+g^{\prime}\left(s^{2}\right) x^{2}+f\left(\frac{1}{t^{2}}\right)-\frac{f^{\prime}\left(\frac{1}{t^{2}}\right)}{t^{2}}+\frac{f^{\prime}\left(\frac{1}{t^{2}}\right)}{x^{2}} \tag{9}
\end{equation*}
$$

With this approximation for $V(x)$, we may use the result of Gol'dman and Krivchenkov (2) for the eigenvalues of Schrödinger equation

$$
\begin{equation*}
-\psi^{\prime \prime}+V^{(s, t)}(x) \psi=\epsilon_{n}(s, t) \psi \tag{10}
\end{equation*}
$$

Table 1. Some lower bounds E_{0}^{L} and upper bounds E_{0}^{U} using (6) for $H=-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}+x^{2}+\frac{1000}{x^{\alpha}}$. The 'exact' values E_{0}^{N} were obtained by direct numerical integration of Schrödinger's equation.

	$\mu=1000$		
α	E_{0}^{L}	E_{0}^{N}	E_{0}^{U}
0.5	-	415.88979	416.30977
1	-	190.72331	190.99213
1.5	-	104.41022	104.53993
1.9	-	71.06158	71.08686
2	65.25346	65.25346	65.25346
2.1	60.12704	60.15201	-
2.5	44.83349	44.95549	-
3	33.07940	33.31676	-
3.5	25.76204	26.10885	-
4	20.91865	21.36964	-
4.5	17.55218	18.10183	-
5	15.11758	15.76113	-
5.5	13.29842	14.03107	-
6	11.90153	12.71862	-

Table 2. lower bounds E_{0}^{L} using (6) for $H=-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}+x^{2}+\frac{\mu}{x^{5 / 2}}$ with different values of μ. The 'exact' values E_{0}^{N} were obtained by direct numerical integration of Schrödinger's equation.

$\alpha=\frac{5}{2}$		
μ	E_{0}^{L}	E_{0}^{N}
1000	44.83349	44.95549
100	17.41900	17.54189
10	7.61169	7.73511
5	6.17394	6.29647
1	4.20453	4.31731
0.5	3.74616	3.84855
0.1	3.20495	3.26687
0.05	3.10954	3.15243
0.01	3.02336	3.03670
0.005	3.01178	3.01905
0.001	3.00237	3.00397

Thus we have

$$
\begin{align*}
\epsilon_{n}(s, t)=g\left(s^{2}\right) & -s^{2} g^{\prime}\left(s^{2}\right)+f\left(\frac{1}{t^{2}}\right)-\frac{1}{t^{2}} f^{\prime}\left(\frac{1}{t^{2}}\right) \\
& +\sqrt{g^{\prime}\left(s^{2}\right)}\left(4 n+2+\sqrt{4 f^{\prime}\left(\frac{1}{t^{2}}\right)+1}\right) . \tag{11}
\end{align*}
$$

For the eigenvalues of Schrödinger equation (3), we have
(a) $E_{n} \leqslant \epsilon_{n}(s, t)$ if g and f are both convex.
(b) $E_{n} \geqslant \epsilon_{n}(s, t)$ if g and f are both concave.

The proof is obtained by the following simple argument. For definiteness we consider case (a). Since g and f are convex, their graphs lie above their tangents. Consequently, we have from (9) that $V^{(s, t)}(x) \leqslant V(x)$. Case (a) then follows by an application of the

Table 3. Upper bounds E_{n}^{U} using (12) for $H=-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}+\lambda x^{1.9}+\frac{\mu}{x^{1.9}}$ with different values of n. The 'exact' values E_{n}^{N} were obtained by direct numerical integration of Schrödinger's equation.

$\lambda=\mu=1$		
n	E_{n}^{U}	E_{n}^{N}
0	4.16038	4.11628
1	7.94696	7.85041
2	11.68436	11.54496
3	15.38987	15.21195
4	19.07175	18.85779
5	22.73485	22.48648
6	26.38239	26.10075
7	30.01664	29.70260
8	33.63930	33.29352
9	37.25169	36.87471
10	40.85486	40.44712

Table 4. Lower bounds E_{n}^{L} using (12) for $H=-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}+\lambda x^{2.1}+\frac{\mu}{x^{2.1}}$ with different values of n. The 'exact' values E_{n}^{N} were obtained by direct numerical integration of Schrödinger's equation.

$\lambda=\mu=1$		
n	E_{n}^{L}	E_{n}^{N}
0	4.30942	4.35698
1	8.51989	8.62697
2	12.78243	12.94000
3	17.07960	17.28355
4	21.40286	21.65081
5	25.74712	26.03751
6	30.10894	30.44071
7	34.48590	34.85823
8	38.87613	39.28842
9	43.27821	43.72998
10	47.69099	48.18184

comparison theorem. Case (b) is proven in an analogous way if 'convex' is replaced by 'concave'. It is appropriate to mention here that the conclusions follow even if either f or g is the identity transformation. These bounds may, of course, be sharpened by optimization with respect to s and t, and moreover they are valid for the entire discrete spectrum $n \geqslant 0$.

3. Numerical results and conclusion

One of the interesting points concerning the bounds we have obtained, in section 2 , is the large variety of approximations made possible by different choices of the transformations g and f. We consider, for example, the case where $g\left(x^{2}\right)=\lambda x^{\beta}$ and $f\left(\frac{1}{x^{2}}\right)=\frac{\mu}{x^{\alpha}}$. From (11) it follows that
$\epsilon_{n}(s, t)=\lambda\left(1-\frac{\beta}{2}\right) s^{\beta}+\left(1-\frac{\alpha}{2}\right) \frac{\mu}{t^{\alpha}}+\sqrt{\frac{\lambda \beta s^{\beta-2}}{2}}\left(4 n+2+\sqrt{\frac{2 \mu \alpha}{t^{\alpha-2}}+1}\right)$.

For the spiked harmonic oscillator $\beta=2$ and therefore it follows from (12) that the eigenvalue approximation is given by (6). In tables 1 and 2 we exhibit the results of the lower bounds obtained by using formula (6) for different values of α and for $\lambda=1$ and different values of the coupling parameter μ, along with some accurate values obtained by direct numerical integration of Schrödinger equation.

For the potential $V(x)=\lambda x^{1.9}+\frac{\mu}{x^{1.9}}$, we take $\beta=1.9$ and $\alpha=1.9$ in formula (12), which provides upper bounds in this case. A comparison of some results obtained by this formula and the corresponding results obtained by direct numerical integration, for 11 energy levels, are reported in table 3 . In table 4, we report the corresponding results for the case $\beta=2.1$ and $\alpha=2.1$, that is to say, for the potential $V(x)=\lambda x^{2.1}+\frac{\mu}{x^{2.1}}$. Similar numerical results could also be obtained by using perturbation methods such as the renormalized hypervirial perturbation method of Killingbeck [20].

The main point of the approach described in this paper is to provide a way to generate simple general approximate formulae to be used for exploratory purposes. Once the appropriate ranges of the potential parameters are established, direct numerical methods could be used to find more accurate eigenvalues.

Acknowledgments

This work was partially financially supported under grant no GP3438 from the Natural Sciences and Engineering Research Council of Canada which is gratefully acknowledged.

References

[1] Hall R L and Satpathy M 1981 J. Phys. A: Math. Gen. 142645
[2] Hall R L and Saad N 1996 J. Phys. A: Math. Gen. 292127
[3] Hall R L 1993 J. Math. Phys. 342779
[4] Ter Haar D 1960 Problems in Quantum Mechanics (London: Infosearch)
[5] Gol'dman I I and Krivchenkov V D 1961 Problems in Quantum Mechanics (London: Pergamon)
[6] Flügge S 1971 Practical Quantum Mechanics (Berlin: Springer)
[7] Constantinescu F and Magyari E 1971 Problems in Quantum Mechanics (Oxford: Pergamon)
[8] Ginocchio J N 1984 Ann. Phys. 152203
[9] Mavromatis H 1991 Exercises in Quantum Mechanics (London: Kluwer)
[10] Squires G L 1995 Problems in Quantum Mechanics (Cambridge: Cambridge University Press)
[11] Harrell E M 1977 Ann. Phys. 105379
[12] Aguilera-Navarro V C, Estévez G A and Guardiola R 1989 J. Math. Phys. 3199
[13] Aguilera-Navarro V C and Guardiola R 1991 J. Math. Phys. 322135
[14] Flynn M F, Guardiola R and Znojil M 1991 Czech. J. Phys. 411019
[15] Znojil M 1992 Proc. Int. Conf. on Hadron Structure 91, Proc. CSFR 11
[16] Estévez-Bretón E S and Estévez-Bretón G A 1993 J. Math. Phys. 34437
[17] Znojil M 1993 J. Math. Phys. 344914
[18] Hall R L and Saad N 1995 Can. J. Phys. 73493
[19] Hall R L 1992 J. Phys. A: Math. Gen. 254459
[20] Killingbeck J 1981 J. Phys. A: Math. Gen. 141005

