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Abstract. We study smooth transformation&(x) = g(x?) + f (xiz) of the solvable potentials
ax? + % Eigenvalue approximation formulae are obtained which provide lower or upper
energy bounds for all the discrete energy eigenvaligsn = 0, 1,2, ..., accordingly as the
transformation functiong and f are both convex or both concave. Detailed results are presented
for the special case of two-term singular potentials of the fof) = Ax? + Lo, >0,

and also for the potentialg (x) = ax19 + s andVvx) = ax2l 4 H1, 4> 0,1 >0, for
0<n<10.

1. Introduction and main result

In many cases the exactly solvable problems in non-relativistic quantum mechanics provide
simple and effective models illustrating the most relevant features of actual physical
phenomena. Further, they may provide a starting point for more accurate approximations
based on a variational or perturbation method, or on geometric properties of the Hamiltonian
involved [1, 2]. In envelope theory [3], for example, the exactly solvable models play a basic
role in the development of the energy approximation expressions. There are many excellent
sources available in the literature for exactly solvable models in quantum mechanics [4-10].
Gol'dman and Krivchenkov [5], for example, have provided a clear description of the exact
solution for the following one-dimensional Séldinger equation (in unitd = 2m = 1):

" O %)w &Y Y©@©=0 >0, u>0. 1)
They showed that the energy spectrum of (1) is given by
gnzﬁ(4n+2+,/4u+1) n=012.... )

The purpose of the paper is to use such solutions to investigate the spectrum of the
Schibdinger equation:

—y"+ V@)Y = E ¥ ¥(0) =0 €))
where
1
V) =g+ f (ﬂ) 4)

is a sum of two smooth transformations respectively%)&ndx%, andE, is the eigenvalue.
We shall show thaf, can be approximated by the expression

E ~ — min 2 2,/ 2) 1 1 ’ 1
n'\'En—s.t>0 g(s)—sg(s +f ﬁ _ﬁf ﬁ
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+ g’(s2)<4n+2—|— /4f/(t12>—|—1>} n=0,12.... (5)

This formula provides a lower boun@k=>) or an upper bound~=<) to the exact
eigenvalues according to whether the transformation functoasd f are both convex or

both concave. This allows us, for example, to obtain simple expressions which bound
the spectrum of the spiked harmonic oscillator potentiak) = ix? + Lo =1,

n =0,12, ..., a problem which is of considerable interest [11-18]. Indeed, formula
(5) implies that the energy of spiked harmonic oscillator can be approximated by
E, ~ e, () = (1 - %) t% 22 4 2V @n + 1) ©)

wheref is the real root of
2uat®™ — 4t +1=0.
Heree,(f) is lower bound toE, whena > 2 and an upper bound when< 2.

2. Transformed potentials

In order to lay down a framework to the approximation method we are about to construct,
we consider a Scbdinger Hamiltonian of the form

2
H=—d+g(x2)+f<l> (7

dx2 x2
where g and f are smooth transformations af and x—lz respectively. For example,
when g and f are identity transformations, the problem has the exact solution (2) for
all n and arbitrary positive values ¢f and x. Standard envelope theory [3] suggests the
following approach to treat a Hamiltonian of the form (7). We may approximate the shape
of V(x) = g(x?) + f(xiz) by some suitable potential, called base potential, with known
spectrum. Using the well known comparison theorem (or refinements thereto [19]) for
V (x) with this base potential, we can obtain eigenvalue bounds#forThis method has
been applied to obtain a simple lower bound formula for eigenvalues of the spiked harmonic
oscillator V (x) = x? 4+ 1/x%, & > 1 using a harmonic oscillator as a base potential [18].
Here we add a new idea which leads to energy bounds which are both more general
and sharper. Instead of approximatifi@x) by a single potential, as in [18], we use the
tangent approximation fog(x?) and f(x—lz), separately. That is to say, we replagcand f
by their corresponding tangent approximations

g9 (x?) = a(s) + b(s)x?
8
Ak (12)=c(t)+d(;) (©)
X X

respectively, wherg is a contact point betweey(x?) and its tangent approximatign® (x2),
and: plays a similar role forf. Elementary analysis implies th&t(x) in (4) can thus be
approximated by

rel el
V(S,t)(x) — g(SZ) _Szg/(sz) +g/(sz)x2+ f (Jé) _ f (2,2) n f (;2) (9)
t t X

With this approximation folV (x), we may use the result of Gol'dman and Krivchenkov (2)
for the eigenvalues of Scbdinger equation

P+ VO )Y = €5 DY "o
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Table 1. Some lower bound#} and upper bound£y using (6) forH = —d‘i—zz + x2 + 1000,
The ‘exact’ valuesEéV were obtained by direct numerical integration of Sxctinger's equation.

u = 1000
o«  Ef EY EJ
05 — 41588979  416.30977
1 — 190.72331  190.99213
15 — 104.41022  104.53993
19 — 71.06158  71.08686

2 65.253 46 65.253 46 65.253 46
2.1 60.12704 60.15201 —
2.5 44.83349 4495549 —
3 33.07940 33.31676 —
3.5 25.76204 26.10885 —
4 20.91865 21.36964 —
45 17.55218 18.10183 —
5 15.11758 1576113 —
5.5 13.29842 14.03107 —
6 11.90153 12.71862 —

Table 2. lower boundsEg using (6) forH = —(ﬂ—zz +x24 ﬁ with different values ofu. The
‘exact’ vaIuesE{)" were obtained by direct numerical integration of Sxtinger's equation.
_5
=3
© EL EY

1000 4483349 44.95549
100 17.41900 17.54189

10 7.61169 7.73511
5 6.17394 6.296 47
1 4.20453 431731
0.5 3.746 16 3.84855
0.1 3.204 95 3.266 87

0.05 3.10954 3.15243
0.01 3.02336 3.03670
0.005 3.01178 3.01905
0.001 3.00237 3.00397

Thus we have
2 2 1,2 1 1 ’ 1
€(s, 1) =g(s%) —s°g )+ f 2] 2 2
1
+Vg A (dn+2+ 4f’(t2)+1 ) (11)
For the eigenvalues of Sardinger equation (3), we have
(8) E, < e€,(s,1) if g and f are both convex.
(b) E, > €,(s,1) if g and f are both concave.
The proof is obtained by the following simple argument. For definiteness we consider

case (a). Sincg and f are convex, their graphs lie above their tangents. Consequently,
we have from (9) thaV©”(x) < V(x). Case (a) then follows by an application of the
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Table 3. Upper boundsEY using (12) forH = —dd—zz +x19 4 5 with different values ofi.
X X+
The ‘exact’ valuesEY were obtained by direct numerical integration of Sitinger’s equation.

r=n=1

n EV EN
0 4.160 38 4.11628
1 7.946 96 7.85041
2 11.68436 11.54496
3 15.38987 15.21195
4 19.07175 18.85779
5 22.73485 22.48648
6 26.38239 26.10075
7 30.01664 29.70260
8 33.63930 33.29352
9 37.25169 36.87471

10 40.85486 40.44712

Table 4. Lower boundsEL using (12) forH = — 5722 +ax2l 4 % with different values ofi.

The ‘exact’ valuestY were obtained by direct numerical integration of Stinger's equation.

r=un=1

n EL EN
0 4.30942 4.356 98
1 8.51989 8.626 97
2 12.78243 12.94000
3 17.07960 17.28355
4 2140286 21.65081
5 25.74712 26.03751
6 30.10894 30.44071
7 3448590 34.85823
8 38.87613 39.28842
9 43.27821 43.72998

10 47.69099 48.18184

comparison theorem. Case (b) is proven in an analogous way if ‘convex’ is replaced by
‘concave’. It is appropriate to mention here that the conclusions follow even if eftloerg
is the identity transformation. These bounds may, of course, be sharpened by optimization
with respect tos and¢, and moreover they are valid for the entire discrete spectrus0.

3. Numerical results and conclusion

One of the interesting points concerning the bounds we have obtained, in section 2, is the
large variety of approximations made possible by different choices of the transformations
g and . We consider, for example, the case where?) = rx? and f(x—lz) = L. From

(11) it follows that

_ B\ ay M [ABsP—2 [2u0
Gn(S,t)—)\(l—2>S +<1_§)t7a+ T 4}’l+2+ t(xi—z-’_l . (12)
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For the spiked harmonic oscillatgg = 2 and therefore it follows from (12) that the
eigenvalue approximation is given by (6). In tables 1 and 2 we exhibit the results of
the lower bounds obtained by using formula (6) for different values ahd forA = 1 and
different values of the coupling parameger along with some accurate values obtained by
direct numerical integration of Sabdinger equation.

For the potentialV (x) = Ax% + % we takeg = 1.9 andae = 1.9 in formula
(12), which provides upper bounds in this case. A comparison of some results obtained
by this formula and the corresponding results obtained by direct numerical integration, for
11 energy levels, are reported in table 3. In table 4, we report the corresponding results
for the case = 2.1 ande = 2.1, that is to say, for the potentidd (x) = Ax?* + ;.

Similar numerical results could also be obtained by using perturbation methods such as the
renormalized hypervirial perturbation method of Killingbeck [20].

The main point of the approach described in this paper is to provide a way to generate
simple general approximate formulae to be used for exploratory purposes. Once the
appropriate ranges of the potential parameters are established, direct numerical methods
could be used to find more accurate eigenvalues.
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